ContohPenyelesaian Sistem Persamaan Linear Tiga Variabel Dengan Matriks. . 1X. Kamu lagi nonton preview, nih. Masuk buat beli paket dan lanjut belajar. Di video ini, lo akan mendapatkan contoh soal dan penyelesaian SPL dengan 3 variabel menggunakan matriks. Tonton videonya yuk! Matriks untuk Penyelesaian Sistem Persamaan Linear
Sampaipada abad ke-19, aljabar linear diperkenalkan lewat sistem persamaan linear dan matriks.Dalam matematika modern, perkenalan lewat ruang vektor lebih disukai, karena sifatnya yang lebih umum (tidak terbatas pada kasus dimensi yang berhingga) dan lebih mudah secara konseptual, walaupun lebih abstrak.. Suatu ruang vektor atas medan F (umumnya berupa
Dibawahini yang akan kita bahas adalah persamaan linear dari 2 dan 3 variabel. A. Sistem Persamaan Linear Dua Variabel Tujuan penyelesaian sistem persamaan linear dua variabel adalah menentukan nilai x dan y yang memenuhi sistem persamaan itu. Untuk menyelesaikan persamaan linear ada 2 metoda yaitu metoda Invers dan metoda cramer 1.
Hasildari persamaan linier berupa garis lurus. b) Sistem Persamaan Tak Linier (SP Non Linier) pada metode numerik disajikan 3 metode yang biasa digunakan yaitu metode Bisection, metode Newton Raphson, dan metode Secant. Hasil dari persamaan linier berupa garis lengkung. Secara Umum, persamaan nonlinier, ” x” mungkin tidak selalu
. Sistem persamaan linear SPL adalah beberapa persamaan linear yaitu suatu persamaan yang memiliki variabel dengan pangkat tertinggi sama dengan 1. Cara menyelesaikan SPL dengan matriks dapat menjadi alternatif penyelesaian sistem persamaan linear yang memiliki banyak varibel. Ada beberapa cara untuk menyelesaikan sistem persamana linear antara lain metode subtitusi, eliminasi, dan campuran. Selain itu cara menyelesaikan sistem persamaan linear dengan matriks juga dapat digunakan. Penyelesaian sistem persamaan linear berupa nilai-nilai varibel yang memenuhi semua persamaan dalam sistem persamaan linear. Matriks sendiri adalah susunan bilangan-bilangan dalam baris dan kolom, di mana baris dan kolom matrik menyatakan ukuran matriks. Misalnya suatu matriks diketahui memiliki ukurab 3 x 3, artinya matriks tersebut terdiri atas tiga baris dan tiga kolom. Isi baris dan kolom pada matriks adalah bilangan-bilangan, sehingga pada matriks dengan ukuran 3 x 3 memuat 9 bilangan. Contoh lain, matriks dengan ukuran 2 x 3 artinya matriks memiliki dua baris dan tiga kolom. Berbeda dengan matriks dengan ukuran 3 x 2 yang artinya matriks memiliki tiga baris dan dua kolom. Baca Juga Operasi Hitung pada Matriks Suatu bentuk sistem persamaan linear dapat dibawa ke dalam bentuk matriks. Dari bentuk matriks yang diperoleh kemudian dapat diselesaikan sehingga diperoleh nilai-nilai dari variabel yang memenuhi sistem persamaan linear. Itulah salah satu fungsi dari matriks yaitu untuk menyelesaikan SPL dengan matriks. Bagaimana cara mebentuk sistem persamaan linear ke dalam bentuk matriks? Bagaimana cara menyelesaikan sistem persamaan linear SPL dengan matriks? Sobat idschool dapat mencari tahu jawabannya melalui ulasan di bawah. Table of Contents Cara Menyelesaikan SPL dengan Matriks untuk 2 Variabel Menyelesaikan SPLTV dengan Matriks Cara Menyelesaikan SPL dengan Matriks untuk 2 Variabel Cara yang paling umum dilakukan untuk menyelesaikan sistem persamaan linear dua variabel SPLDV adalah menggunakan metode substitusi, eliminasi, atau campuran. Kali ini, idschool akan mengenalkan cara menyelesaiakan sistem persamaan linear SPL dengan cara yang baru, yaitu dengan menggunakan matriks. Meskipun cara ini akan sedikit rumit, namun cara ini akan sangat berguna untuk menyelesaikan sistem persamaan linear dengan banyak variabel. Diketahui sistem persamaan linear dengan dua varibel yaitu ax + by = c dan px + qy = r. Bentuk sistem persamaan linear dua varibel tersebut dapat ditulis dalam bentuk matriks seperti berikut. Berdasarkan sifat matriks invertibel, maka variabel x dan y dapat diketahui melalui cara berikut. Selain cara di atas, penyelesaian matriks untuk mendapatkan nilai x dan y juga dapat dilakukan dengan nilai determinan matriks D. Contoh cara menyelesaikan SPL dengan matriks pada sistem persamaan linear dengan dua variabel dapat dilihat seperti pada pembahasan di bawah. SoalTentukan nilai x dan y yang memenuhi sistem persamaan linear 2x + y = 5 dan x + y = 7! PenyelesaianBentuk matriks yang sesuai dengan sistem persamaan linear 2x + y = 5 dan x + y = 7 adalah sebagai berikut. Dengan menyelesaikan operasi matriks untuk variabel x dan y di ruas kiri dan yang lain di ruas kanan maka selanjutnya dapat diperoleh nilai x dan y. Cara menyelesaikan SPL dengan matriks untuk soal seperti di atas dapat diselesaikan seperti cara berikut. Jadi, solusi dari dua persamaan linear dua variabel 2x + y = 5 dan x + y = 7 adalah x = –2 dan y = 9. Baca Juga Pengertian Matriks dan Sifat-Sifatnya Cara menyelesaikanSPL dengan matriks akan sangat bermanfaat pada sistem persamaan linear dengan variabel yang banyak, misalnya pada sistem persamaan linear tiga variabel SPLTV. Metode substitusi, eliminasi, atau campuran dirasa tidak tepat untuk menyelesaikan SPLTV. Selanjutnya, simak penyelesaian sistem persamaan linear tiga variabel SPLTV menggunakan matriks. Diketahui tiga persamaan linear dengan tiga variabel x, y, dan zax + by + cz = dpx + qy + rz = skx + ly + mz = n Bentuk SPLTV di atas dalam bentuk matriks dapat dibuat seperi berikut. Baca Juga Cara Menentukan Invers Matriks Berdasarkan matriks di atas, dapat disusun determinan utama, determinan variabel x, determinan variabel y, dan determinan variabel z. Untuk lebih jelasnya perhatikan masing-masing determinan pada daftar di bawah. Determinan utama Determinan variabel x Determinan variabel y Determinan variabel z Selanjutnya, nilai dari ketiga variabel yaitu x, y, dan z dapat dihitung melalui persamaan di bawah.
1 Sistem Persamaan Linier dua Variabel Salah satu diantara penggunaan invers matriks adalah untuk menyelesaikan sistim persamaan linier. Tentu saja teknik penyelesaiannya dengan aturan persamaan matriks, yaitu Selain dengan persamaan matriks, teknik menyelesaikan sistem persamaan linier juga dapat dilakukan dengan determinan matriks. Aturan dengan cara ini adalah Untuk lebih jelaxnya, ikutilah contoh soal berikut ini 02. Tentukan himpunan penyelesaian sistem persamaan 2x – 3y = 8 dan x + 2y = –3 dengan metoda a Invers matriks b Determinan Jawab a Dengan metoda invers matriks diperoleh b Dengan metoda determinan matriks diperoleh 2 Sistem Persamaan Linier Tiga Variabel. Sepeti halnya pada sistem persamaan linier dua variabel, menyelesaikan sistem persamaan linier tiga variabel dengan matriks juga terdiri dari dua cara, yakni dengan menggunakan determinan matriks dan dengan menggunakan aturan invers perkalian matriks. Berikut ini akan diuraikan masing masing cara tersebut. Aturan menyelesaikan sistem persamaan linier menggunakan determinan matriks adalah dengan menentukan terlebih dahulu matriks koefisien dari sistem persamaan itu. Selanjutnya ditentukan empat nilai determinan sebagai berikut 1 D yakni determinan matriks koefisien 2 Dx yakni determinan matriks koefisien dengan koefisien x diganti konstanta 3 Dy yakni determinan matriks koefisien dengan koefisien y diganti konstanta 4 Dz yakni determinan matriks koefisien dengan koefisien z diganti konstanta Rumus masing-masingnya adalah sebagai berikut Untuk lebih jelasnya, ikutilah contoh soal berikut ini 01. Tentukanlah himpunan penyelesaian sistem persamaan linier dibawah ini dengan menggunakan metoda determinan 2x – 3y + 2z = –3 x + 2y + z = 2 2x – y + 3z = 1 Jawab D = 223 + –312 + 21–1 – 222 – 21–1 – –313 D = 12 – 6 – 2 – 8 + 2 + 9 D = 7 Dx = –323 + –311 + 22–1 – 221 – –31–1 – –323 Dx = –18 – 3 – 4 – 4 – 3 + 18 Dx = –14 Dy = 223 + –312 + 211 – 222 – 211 – –313 Dy = 12 – 6 + 2 – 8 – 2 + 9 Dy = 7 Dz = 221 + –322 + –31–1 – –322 – 22–1 – –311 Dz = 4 – 12 + 3 + 12 + 4 + 3 Dz = 14
Kelas 11 SMAMatriksPenyelesaian Persamaan Linear Dua atau Tiga Variabel dengan Menggunakan Konsep MatriksTentukanlah penyelesaian sistem persamaan linear berikut dengan menggunakan invers matriks dan aturan Cramer. x+y+2z=9 2x+4y-3z=1 3x+6y-5=0Penyelesaian Persamaan Linear Dua atau Tiga Variabel dengan Menggunakan Konsep MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0215Sistem persamaan linear dua variabel 4x-3y=5 x-2y=-4 dapa...0412Avi dan Anti belanja di toko yang sama. Avi membeli 5 bun...0756Harga 4 kg salak, 1 kg jambu, dan 2 kg kelengkeng adalah ...0358Jika penyelesaian sistem persamaan {a-2x+y=0 x+a-2y...Teks videoHalo keren saat ini kita akan mengerjakan sebuah soal dengan materi sistem persamaan linear dengan metode matriks. Jadi kita diberikan tiga persamaan kita diminta untuk menentukan penyelesaiannya dengan metode yang pertama ada invers matriks dan yang kedua Ada apa orang remote? Sekarang kita mau pulang dulu pertama ane jadi persamaan 1 x y x + y + 2z = 9 persamaan 2 x + 4y min 3 Z = 10 dan persamaan 3 itu ada perubahan 3 x + 6 y = 5 kemudian ini bisa kita susun persamaan matriks yaitu matrik a dikali X = matriks B di mana itu berasal dari koefisien yang ruas sebelah kiri ada 112 untuk yang satu didapat dari persamaan 1 kolom dan baris 2 di persamaan 224 min 3 + 3 berapa dari persamaan 336 x 8 x nya itu variabel x y z kita buat sebagai matriks kolom dan matriks B itu adalah masa nggak dibales kanan ada 915 dari sini bisa kita tulis pesawat batik ini menjadi X = invers dari matriks A dikali dengan matriks B Sekarang kita akan sedikit mengenai invers matriks 3 * 3 dan D Nah sekarang kita akan review mengenai determinan pada matriks 3 * 3 dan invers pada matriks 3 * 3 matriks a b c d e f g h i g a 3 * 3 kita akan mencari determinan matriks dengan cara aturan terus jadi sekarang masih ada tapi kita gunakan di sini aku harus apa sih orang-orang itu jadi kita buat sekarang kita mencari determinan A B C D E F G maka simbol-simbol ada garis lurus A B C D E F G kita buat seolah-olah ada matriks baru tapi dia bukan motif baru yaitu kita ambil dua kolom pertama itu dari kolom 1 dan volume kedua jadi ini satu kan ada ada IG pemeran film 2 ada B sakit yang untuk mencari besok sama seperti ketika kita menghitung determinan matriks 2 * 2 itu dengan cara saling itu Nah di sini determinan matriksnya itu atau di tangan matriks p yang pertama ini kan ada diagonal yang miring ke kanan bawah ini kita kan kita kan juga ya sebelah kanan ya itu B ini masih jumlah dirinya kemudian masih ada lagi itu di sini masih kita juga kan Nah ini Nah di sini nggak ada duitnya buat yang orangnya yang di kurang itu kalau dia ngirimnya ke kiri seperti ini maka ada C seperti ini kemudian seperti ini miring ke kiri bawah dan ada di dinas inilah determinan matriks 3 * 3 dengan metode aturan terus kan kita akan mencari invers matriks dengan metode operasi baris elementer NATO dalam beberapa buku ini disebut juga metode reduksi baris Ada cara lain tapi tekan Gunakan cara ini yang menurutku lebih mudah jadi semisal ada matriks-matriks P tadi ada a b c d e f g h i n a kita buat di sebelah kanannya adalah matriks yang berisi matriks identitas jadi matriks identitas adalah matriks persegi kalau ini 3 * 3 maka matriks identitas juga harus tiga kali nggak di mana matriks identitas adalah matriks yang utamanya yang dari pojok kiri ke pojok kiri atas ke pojok kanan bawah itu berisi adonan isinya 1 semua dan itu itu yang disebut matriks identitas ketika kita punya dua mata ini kita akan melakukan operasi baris elementer supaya matriks yang di sebelah kiri itu nanti bentuknya 0001-0001 jadi kita ubah yang semula matriks identitas ada di sebelah kanan kita buat Gimana caranya supaya mata sebelah kiri itulah yang menjadi identitas kemudian nanti di sebelah kanan yang disebut invers matriks karena di sini kita cari adalah O p pangkat min 1 dalam notasi untuk matriks nanti kalau ini a b c d a b c d e f g h i maka kita akan menjadi a aksen B aksen C aksen D aksen B aksen C aksen dan b aksen metode operasi baris elementer ada pajak jadi ada yang pertama kita bisa menukar baris jadinya dari 1. Peristiwa itu bisa kurang atau 1 dengan 21 dan 3 orang lain yang kedua kita bisa menjumlahkan atau mengurangkan antar baris baris 2 dikurang baris 3 baris 2 dikurang 3 kalinya baris 3 atau terusnya itu penjumlahan atau pengurangan antar baris kemudian kita bisa juga mengalikan atau membagi baris dengan faktor skala k jadi kita misalkan mengalikan dari 1 dengan 5 atau mengalihkan Pak mengalikan dari 3 dengan 2000 atau bisa juga itu adalah 33 langkah-langkah bagian dari operasi baris elementer sekarang kita bisa cari invers matriks dan determinan matriks yang diminta pada soal Nah telah kita dapat tadi. review mengenai invers matriks dan determinan sekarang kita buat ini matriks 1 1 2 2 4 3 3 60 bulan ini identitasnya dengan operasi baris elementer di sini ada 2 ada 3 anak tadi harus bentuk 00 karena kita buat menjadi matriks identitas mata sebelah kiri berarti Baris 2 dikurang 2 baris 1 baris 3 dikurang 3 per 1 menit ini yang kita tinjau adalah yang kebetulan kita tinjau dari Sebutkan 3 4 1 1 0 2 7 ini udah berubah karena di sini 36/100 tetap disini 21001 ini kita bagi baris ketiga dengan 3 karena kita mengharapkan di sini nanti bentuknya adalah mau disini bentuknya adalah 1. Berarti kita sudah makan dulu 11202 menyetujui tetaplah yang baik 32 jadi 012 ini 100 Min 210 Min 10 per 3 banget ya Bari 2 kita kurangkan dengan 12/3 sana 2 di tengah sini harus kita amalkan berarti kita dapat bentuk 11200 di sini Min 301 min 2110001 min 2 per 3 x Sin berubah lagi Min 10 per 3 Nah selanjutnya baris 2 kita kalikan dengan 43 atau kita bagi dengan min 3 karena ingin tinggal di sini harus bentuknya 01 maaf Nah sekarang bisa kita buat 11201 yang di sini 0 1 min 2 Sin 1000 per 32 per 9 Min 10 per 3 selanjutnya dari satu itu kita tambah dengan baris 3 supaya 2 di sini itu hilang arah arus bentuknya yang disini itu bentuknya seperti 12000101 min 20 per 30 per 32 per 9 Min 10 per 3 baris 3 kita tambahkan dengan 2 baris 2 supaya min 2 di sini itu hilang berarti kita dapat 120001010 disini per 30 per 32 per 912 per 37 per 9 menit ya karena ini harus tebus nol berarti baris 1 kita kurangkan dengan 2 baris 3 supaya Duadji habis nanti kita buat 1 0 0 0 0 1 0 1 0 Sin 24 per 3 min 11 per 90 per 32 per 9 min 1 min 2 per 37 per 9 selanjutnya harus lihat bahwa kita kan juga bisa menukar baris karena di sini 0 0 1 0 1 0 0 1 0 0 0 1 2 3 4 1 0 0 0 1 0 1 2 4 per 3 min 11 per 9 min 1 min 2 per 37 + 90 per 3 2% maka bentuk matriks identitas berarti ini udah bentuk invers matriks nya Sekarang kita ke halaman sebelumnya berarti ini bisa ketulis matriks X itu dari soalnya tadi aku dapat 24 per 3 min 9 per 92 per 37 per 90 per 32 per 9 dikalikan dengan masih punya 915 kita dapat x y z berarti 2 * 9 + 4 per 3 kali 1 pangkat min 11 X min 11 per 9 kali 5 min 1 per 9 + 2 per 3 * 1 + 79 * 5 + 30 * 9 + 3 * 1 + 9 * 5 terdapat xyz itu berturut-turut 119 per 9 Min 5 per 52 + 97 per 9 x + 16 per 9 y 59 Z itu 79 sekarang akan kita bandingkan dengan aturan cramer yang harusnya nanti hasilnya sama Nah, ini udah cepet kali pulang. Sekarang kita akan buat matriks baru itu materi S1 yang mana itu berasal dari matriks A yang kolom satunya kita substitusikan dengan matriks B kemudian kita buat juga matriks X 2 matriks kedua yang mana Kalau mendua itu kita ganti dengan seperti ini demikian juga dengan matriks baru yang terakhir saya tuh S3 yang mana kita mensubstitusikan kolom 3 pada matriks A itu dengan matriks baiknya seperti ini kenapa sih kita buat seperti ini karena Aturan cramer itu bentuk seperti ini untuk solusi nya gimana teman-teman ya pada materi ini kolom satu itu sebenarnya Diamond pic X episode yang mewakili dan kolom 3 itu dia mau lihat Itu berarti kita dapat dari determinan matriks X1 yang mana satu kita di kolong satunya yang kita ganti dengan motif sebaiknya seperti itu dengan determinan dari matriks A yang ngomongnya demikian juga untuk nyari temen Tebak itu determinan matriks 2A itu determinan matriks determinan matriks sekarang kita belum tahu nilai kita cari dulu di halaman berikutnya. Nah ini untuk determinan matriks A kita seperti ini berarti kita tulis 1 * 4 * 0 di sini + 1 x min 3 * 3 + 2 * 2 * 6 di sini kurang 2 * 4 * 3 di sini kurang lagi 1 * 3 * 6 dikurang 1 * 2 * 0 di sini sekarang kita hitung Ini hasilnya akan 9 Kemudian untuk datang ke 1 dengan cara yang sama metode terus berarti 9 * 4 * 0 di sini + 1 * 3 * 5 itu di sini + 2 * 1 * 6 di sini dikurang 2 x 4 x 5 dikurang 9 x min 3 * 6 di sini dikurang 1 * 1 * 0 di sini kemudian hasilnya adalah 119 kemudian ditambah X2 tapi kita tapi ini 1 * 1 * 0 di sini ditambah 9 x min 3 * 3 di sini ditambah 2 x 2 x 5 kurang 2 x 1 x 3 di sini dikurang 1 x min 3 * 5 di sini dikurang 9 * 2 * 0 hasilnya adalah 52 pengertian untuk determinan matriks 3 tertulis seperti ini berarti kita hitung 1 * 4 * 5 di sini ditambah 1 * 1 * 3 di sini ditambah 9 x 2 x kurang 1 dikurang 9 * 4 * 3 di sini dikurang 1 * 1 * 6 di sini dikurang 1 * 2 * 5 di sini adalah 7 udah dapat 4. Sekarang kita kalau masuk belum ya Nah dari sini bisa kita itu berarti eksitu 199y Itu mi 5 2/9 itu 7 per 9 x 199 y 6 Min 5 2 9 7 9 sesuai dengan saat kita menggunakan metode invers matriks Oke sampai jumpa pada soal selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
4. Penyelesaian SPLTV Metode Determinan Langkah-langkah untuk menentukan himpunan penyelesaian SPLTV dengan metode determinan adalah sebagai berikut. Langkah Pertama, ubahlah sistem persamaa linear tiga variabel ke dalam bentuk matriks, yaitu sebagai berikut. Misalkan terdapat sistem persamaan berikut. a1x + b1y + c1z = d1 a2x + b2y + c2z = d2 a3x + b3y + c3z = d3 persamaan di atas kita ubah menjadi bentuk berikut A . X = B …………… Pers. 1 Dengan A = a1 b1 c1 a2 b2 c2 a3 b3 c3 Sehingga persamaan 1 di atas menjadi bentuk matriks berikut. a1 b1 c1 x = d1 a2 b2 c2 y d2 a3 b3 c3 z d3 Langkah Kedua, tentukan nilai determinan matriks A D, determinan x Dx determinan y Dy dan determinan z Dz dengan persamaan berikut. D = a1 b1 c1 a1 b1 = a1b2c3 + b1c2a3 + c1a2b3 – a3b2c1 + b3c2a1 + c3a2b1 a2 b2 c2 a2 b2 a3 b3 c3 a3 b3 D adalah determinan dari matriks A. Dx = d1 b1 c1 d1 b1 = d1b2c3 + b1c2d3 + c1d2b3 – d3b2c1 + b3c2d1 + c3d2b1 d2 b2 c2 d2 b2 d3 b3 c3 d3 b3 Dx adalah determinan dari matriks A yang kolom pertama diganti dengan elemen-elemen matriks B. Dy = a1 d1 c1 a1 d1 = a1d2c3 + d1c2a3 + c1a2d3 – a3d2c1 + d3c2a1 + c3a2d1 a2 d2 c2 a2 d2 a3 d3 c3 a3 d3 Dy adalah determinan dari matriks A yang kolom kedua diganti dengan elemen-elemen matriks B. Dz = a1 b1 d1 a1 b1 = a1b2d3 + b1d2a3 + d1a2b3 – a3b2d1 + b3d2a1 + d3a2b1 a2 b2 d2 a2 b2 a3 b3 d3 a3 b3 Dz adalah determinan dari matriks A yang kolom ketiga diganti dengan elemen-elemen matriks B. Langkah Ketiga, tentukan nilai x dan y dengan persamaan berikut. Contoh Soal Dengan menggunakan metode determinan, tentukanlah himpunan penyelesaian dari sistem persamaan berikut ini. 2x + y + z = 12 x + 2y – z = 3 3x – y + z = 11 Jawab Mengubah SPLTV ke bentuk matriks Pertama, kita ubah sistem persamaan yang ditanyakan dalam soal ke bentuk matriks berikut. 2 1 1 x = 12 1 2 −1 y 3 3 −1 1 z 11 Kedua, kita tentukan nilai D, Dx, Dy dan Dz dengan ketentuan seperti pada langkah-langkah di atas. Menentukan nilai D D = 2 1 1 2 1 1 2 −1 1 2 3 −1 1 3 −1 D = [221 + 1−13 + 11−1] – [321 + −1−12 + 111] D = [4 – 3 – 1] − [6 + 2 + 1] D = 0 − 9 D = −9 Menentukan nilai Dx Dx = 12 1 1 12 1 3 2 −1 3 2 11 −1 1 11 −1 Dx = [1221 + 1−111 + 13−1] – [1121 + −1−112 + 131] Dx = [24 – 11 – 3] − [22 + 12 + 3] Dx = 10 − 37 Dx = −27 Menentukan nilai Dy Dy = 2 12 1 2 12 1 3 −1 1 3 3 11 1 3 11 Dy = [231 + 12−13 + 1111] – [331 + 11−12 + 1112] Dy = [6 – 36 + 11] − [9 − 22 + 12] Dy = −19 – –1 Dy = −18 Menentukan nilai Dz Dz = 2 1 12 2 1 1 2 3 1 2 3 −1 11 3 −1 Dz = [2211 + 133 + 121−1] – [3212 + −132 + 1111] Dz = [44 + 9 – 12] − [72 − 6 + 11] Dz = 41 − 77 Dz = −36 Menentukan nilai x, y, z Setelah nilai D, Dx, Dy, dan Dz kita peroleh, langkah terakhir adalah menentukan nilai x, y, dan z menggunakan rumus berikut ini. Dengan demikian, himpunan penyelesaian dari sistem persamaan linear 3 variabel di atas adalah HP = {3, 2, 4}. 5. Penyelesaian SPLTV Metode Invers Matriks Jika A dan B adalah matriks persegi dan berlaku A . B = B . A = 1, maka dikatakan matriks A dan B saling invers. B disebut invers dari A atau ditulis B = A-1. Matriks yang mempunyai invers disebut invertible atau matriks non singular. Sedangkan matriks yang tidak mempunyai invers disebut matriks singular. Untuk mencari invers matriks persegi berordo 3×3, coba kalian perhatikan contoh berikut ini. Jika A = a1 b1 c1 Dengan det A ≠ 0 a2 b2 c2 a3 b3 c3 Maka invers dari matriks A ditulis A-1 dirumuskan sebagai berikut. A-1 = 1/determinan Aadjoin A A-1 = 1 adj a1 b1 c1 a2 b2 c2 det A a3 b3 c3 Jika det A = 0, maka matriks tersebut tidak mempunyai invers atau disebut matriks singular. Untuk menentukan nilai determinan dan adjoin dari matriks A dapat digunakan cara berikut. Determinan matriks A Dari matriks A tambahkan 2 kolom di sebalah kanan. Kolom keempat berisi elemen dari kolom pertama, sedangkan kolom kelima berisi elemen dari kolom kedua matriks A. Sehingga matriks A menjadi seperti berikut. A = a1 b1 c1 a1 b1 a2 b2 c2 a2 b2 a3 b3 c3 a3 b3 Kemudian kalikan elemennya secara diagonal, pertama kalikan searah sejajar dengan diagonal utama. Ada tiga hasil perkaliannya, yaitu a1b2c3, b1c2a3, dan c1a2b3. Ketiga hasil perkalian elemen matriks tersebut bertanda positif. Perhatika diagram perkalian matriks berikut ini. + + + A = a1 b1 c1 a1 b1 a2 b2 c2 a2 b2 a3 b3 c3 a3 b3 Setelah itu, kalian searah dengan sejajar diagonal samping. Ada tiga hasil perkaliannya, yaitu a3b2c1, b3c2a1, dan c3a2b1. Ketiga hasil perkalian elemen matriks ini bertanda negatif. Perhatikan diagram perkalian matriks berikut. − − − A = a1 b1 c1 a1 b1 a2 b2 c2 a2 b2 a3 b3 c3 a3 b3 Determinan dari matriks A adalah jumlah semua hasil perkalian bertandanya yakni det A = a1b2c3 + b1c2a3 + c1a2b3 + −a3b2c1 + −b3c2a1 + −c3a2b1 det A = a1b2c3 + b1c2a3 + c1a2b3 – a3b2c1 + b3c2a1 + c3a2b1 Adjoin matriks A Untuk menentukan nilai adjoin matriks A digunakan rumus berikut. Adj A = matriks kofaktor AT Jadi sebelum dapat menentukan nilai adjoin, kita harus menentukan dahulu matriks kofaktor A yang ditranspose. Matriks Kofaktor A [kofA] Elemen-elemen matriks kofaktor A adalah sebagai berikut. kofA = K11 K12 K13 K21 K22 K23 K31 K32 K33 Kesembilan elemen K tersebut dapat tentukan dengan menggunakan minor-kofaktor yang dirumuskan sebagai berikut. K11 = −11 + 1 M11 M11 adalah determinan minor dari matriks A yang diperoleh dengan menutup baris dan kolom pertama matriks A. M11 = a1 b1 c1 a2 b2 c2 a3 b3 c3 M11 = b2 c2 = b2c3 – b3c2 b3 c3 Dengan demikian, nilai dari K11 adalah sebagai berikut. K11 = −11 + 1 [b2c3 – b3c2] K12 = −11 + 2 M12 M12 adalah determinan minor dari matriks A yang diperoleh dengan menutup baris pertama dan kolom kedua matriks A. M12 = a1 b1 c1 a2 b2 c2 a3 b3 c3 M12 = a2 c2 = a2c3 – a3c2 a3 c3 Dengan demikian, nilai dari K12 adalah sebagai berikut. K12 = −11 + 2 [a2c3 – a3c2] K13 = −11 + 3 M13 M13 adalah determinan minor dari matriks A yang diperoleh dengan menutup baris pertama dan kolom ketiga matriks A. M13 = a1 b1 c1 a2 b2 c2 a3 b3 c3 M13 = a2 b2 = a2b3 – a3b2 a3 b3 Dengan demikian, nilai dari K13 adalah sebagai berikut. K13 = −11 + 3 [a2b3 – a3b2] K21 = −12 + 1 M21 M21 adalah determinan minor dari matriks A yang diperoleh dengan menutup baris kedua dan kolom pertama matriks A. M21 = a1 b1 c1 a2 b2 c2 a3 b3 c3 M21 = b1 c1 = b1c3 – b3c1 b3 c3 Dengan demikian, nilai dari K21 adalah sebagai berikut. K21 = −12 + 1 [b1c3 – b3c1] K22 = −12 + 2 M22 M22 adalah determinan minor dari matriks A yang diperoleh dengan menutup baris kedua dan kolom kedua matriks A. M22 = a1 b1 c1 a2 b2 c2 a3 b3 c3 M22 = a1 c1 = a1c3 – a3c1 a3 c3 Dengan demikian, nilai dari K22 adalah sebagai berikut. K22 = −12 + 2 [a1c3 – a3c1] K23 = −12 + 3 M23 M23 adalah determinan minor dari matriks A yang diperoleh dengan menutup baris kedua dan kolom ketiga matriks A. M23 = a1 b1 c1 a2 b2 c2 a3 b3 c3 M23 = a1 b1 = a1b3 – a3b1 a3 b3 Dengan demikian, nilai dari K23 adalah sebagai berikut. K23 = −12 + 3 [a1b3 – a3b1] K31 = −13+ 1 M31 M31 adalah determinan minor dari matriks A yang diperoleh dengan menutup baris ketiga dan kolom pertama matriks A. M31 = a1 b1 c1 a2 b2 c2 a3 b3 c3 M31 = b1 c1 = b1c2 – b2c1 b2 c2 Dengan demikian, nilai dari K31 adalah sebagai berikut. K31 = −13 + 1 [b1c2 – b2c1] K32 = −13+ 2 M32 M32 adalah determinan minor dari matriks A yang diperoleh dengan menutup baris ketiga dan kolom kedua matriks A. M32 = a1 b1 c1 a2 b2 c2 a3 b3 c3 M32 = a1 c1 = a1c2 – a2c1 a2 c2 Dengan demikian, nilai dari K32 adalah sebagai berikut. K32 = −13 + 2 [a1c2 – a2c1] K33 = −13+ 3 M33 M33 adalah determinan minor dari matriks A yang diperoleh dengan menutup baris ketiga dan kolom ketiga matriks A. M33 = a1 b1 c1 a2 b2 c2 a3 b3 c3 M33 = a1 b1 = a1b2 – a2b1 a2 b2 Dengan demikian, nilai dari K33 adalah sebagai berikut. K33 = −13 + 3 [a1b2 – a2b1] Matriks Kofaktor A Transpose [kofAT] Transpose dari matriks kofaktor A diperoleh dengan cara mengubah baris menjadi kolom dan kolom menjadi baris. Perhatikan cara berikut. kofA = K11 K12 K13 K21 K22 K23 K31 K32 K33 [kofA]T = K11 K21 K31 K12 K22 K32 K13 K23 K33 Dengan demikian, nilai adjoin dari matriks A adalah sebagai berikut Adj A = matriks kofaktor AT Adj A = K11 K21 K31 K12 K22 K32 K13 K23 K33
penyelesaian persamaan linear 3 variabel dengan matriks